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The average pedestrian flow through an exit is one of the most important indices in evaluating pedestrian
dynamics. In order to study the flow in detail, the floor field model, which is a crowd model using cellular
automata, is extended by taking into account realistic behavior of pedestrians around the exit. The model is
studied by both numerical simulations and cluster analysis to obtain a theoretical expression for the average
pedestrian flow through the exit. It is found quantitatively that the effects of exit door width, the wall, and the
pedestrian mood of competition or cooperation significantly influence the average flow. The results show that
there is a suitable width and position of the exit according to the pedestrians’ mood.
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I. INTRODUCTION

Pedestrian dynamics has received growing interest from
physicists over recent decades, since it shows new collective
behaviors such as dynamical phase transitions and spontane-
ous symmetry breaking �1–4�. Helbing et al. designed the
social force model �2�, which reproduces typical pedestrian
behavior such as arching, lane formation, and oscillations of
direction at bottlenecks. It is based on a system of coupled
differential equations which have to be solved by using, e.g.,
a molecular dynamics approach as in the study of granular
matter. Another approach is discrete modeling using cellular
automata, which has been actively studied in recent years
�4–8�. In this paper, we study the floor field �FF� model,
which is a cellular automaton model, introducing two kinds
of FFs, i.e., the static �SFF� and the dynamic FF �DFF� �9�,
to move pedestrians from one cell to another. The two FFs,
which are explained in Sec. II, enable us to simulate egress
processes from complex rooms of arbitrary geometry quite
efficiently. Kirchner et al. discovered that the pedestrian
mood of competition or cooperation increases or decreases
the evacuation time �10�. Moreover, an obstacle in front of
the exit will shorten the evacuation time in some cases in the
simulation of egress processes �11�. Many extended models
have been proposed up to now to make the FF model more
realistic. For example, the strength of the inertia of pedestri-
ans, which suppresses quick changes of the direction of mo-
tion, is considered in �12�. Henein et al. have taken into
account physical forces between pedestrians by adding a dy-
namic force field to the FF model �13�.

Most of these studies are based on simulations, and there
are few analytical results because of the complexity of the
rules of motion and the two-dimensionality. In this paper, we
present an analytical result for outflow through an exit,
which is one of the most important indices in evaluating
evacuation dynamics. Kirchner et al. obtained an expression
for the average number of evacuated persons �N� from an
exit with one cell’s width as a function of the time step and
the friction parameter � using the mean-field approximation
�11�. Here we introduce the bottleneck parameter �, which
makes pedestrian behaviors around the exit more realistic.
We have succeeded in calculating the average flow �Q� as a
function of �, �, and the width of the exit door, w, by the

cluster approximation. As far as we know, the analytical ex-
pression for the average flow through an exit with arbitrary
width is derived for the first time in this paper.

This paper is organized as follows. In Sec. II we briefly
review the FF model and introduce the parameter � in Sec.
III. We calculate the average flow �Q� by the cluster approxi-
mation in Sec. IV, and �Q� obtained from simulation and the
theoretical expression are compared in Sec. V. In Secs. VI
and VII we consider how the mood of the pedestrians and a
wall beside the exit influence the average flow. Both effects
are explained using the contour plots of the average flow in
Sec. VIII. Section IX is devoted to summary and discussion.

II. FLOOR FIELD MODEL

A. Floor field

We consider a situation where every pedestrian in a room
moves to the same exit. The room is divided into cells as
given in Fig. 1. The person-shaped silhouettes represent pe-
destrians; the letters E and O represent the exit cell and
obstacle cells, respectively. Each cell contains only a single
pedestrian at most. At every time step, pedestrians choose
which cell to move from five cells: the cell in which the
pedestrian stands now ��i , j�= �0,0�� and the Neumann
neighboring cells ��i , j�= �0,1�, �0,−1�, �1,0�, �−1,0�� �Fig.
2�. Two kinds of FF determine the probability of movement
direction. The SFF Sij, which is the shortest distance to the
exit cell, is given by the L2 norm as

Sij = ��xij − xexit�2 + �yij − yexit�2, �1�

where �xij ,yij� and �xexit ,yexit� are the coordinates of the cell
�i , j� and the exit cell, respectively. However, when there is

FIG. 1. Schematic view of an evacuation simulation by the FF
model. Pedestrians proceed to the exit by one cell at most for each
time step.
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an obstacle on the way to the exit, the SFF is calculated by
making a detour around it �Fig. 3�. Thus, the SFF is not
simply described by �1� in that case �12�. Pedestrians move
to a cell that has a smaller SFF than the cell they occupy and
hence go to the exit. The DFF Dij at cell �i , j� is the number
of footprints left by the pedestrians. Pedestrians interact with
each other using footprints as do ants using their phero-
mones. The long-ranged interaction through the pedestrians’
sight is approximated by a short-ranged interaction around
the pedestrians by using the DFF. This shortens the calcula-
tion time dramatically. When pedestrians move to the com-
mon exit, it is known in reality that they tend to follow each
other. This phenomenon can be reproduced by moving pe-
destrians to a cell with a bigger DFF �Fig. 4�. The DFF has
its own dynamics, namely, diffusion and decay, which leads
to broadening, dilution, and finally vanishing of the foot-
prints �12�.

Therefore, in this model, the transition probability pij for
a move to a neighbor cell �i , j� is determined by the follow-
ing expression:

pij = N�ij exp�− ksSij + kdDij� . �2�

Here the values of the FFs Sij and Dij at each cell �i , j� are
weighted by two sensitivity parameters ks and kd with the
normalization N. There is a minus sign before ks since the
pedestrian moves to a cell with a lower SFF. �ij returns to 0
for an obstacle or a wall cell and returns to 1 for other kinds
of cells. Note that in our paper a cell occupied by a pedes-
trian is not regarded as an obstacle cell; thus it affects the
normalization N.

B. Conflict resolution and friction

Due to the use of parallel dynamics, it can happen that
two or more pedestrians choose the same target cell in the

update procedure. Such situations are called conflicts in this
paper. To describe the dynamics of a conflict in a quantitative
way, the friction parameter �� �0,1� was introduced in
Refs. �10,11�. This parameter describes clogging and sticking
effects between the pedestrians. In a conflict, the movement
of all involved pedestrians is denied with probability �, i.e.,
all pedestrians remain in their cells. Therefore, the conflict is
resolved with probability 1–�, and one of the pedestrians is
allowed to move to the desired cell �Fig. 5�. The pedestrian
that actually moves is then chosen randomly with equal
probability. In a situation with large �, pedestrians are com-
petitive and do not give way to others. Thus they hardly
move due to the conflict between them. In contrast, in a
situation with small �, they give way and cooperate each
other.

C. Update rules

The FF model consists of the following five steps per unit
time step, and is repeated until all pedestrians have exited or
the maximum number of calculation time steps have passed.

�1� Calculate each pedestrian’s transition probability by
�2� and the values of the SFF and DFF.

�2� Move pedestrians based on the calculated transition
probability. If there are cells which are possibly occupied by
more than two pedestrians, solve conflicts by the means of
Sec. II B.

�3� Diffuse and decay the DFF of every cell.
�4� Pedestrians who could move at step 2 increase the

value of the DFF by 1 at the cell they occupy.
�5� Pedestrians who stand on exit cells are removed from

the room.

FIG. 3. Static floor field constructed by the exit E. The numbers
in each cell represent the Euclidean distances from the exit cell.

FIG. 4. Schematic view of dynamic floor field. At t+1 two
pedestrians who could move leave footprints at the cells they occu-
pied at t. Remaining pedestrians are likely to move to cells contain-
ing footprints.

FIG. 5. Method of solving conflicts. In a conflict situation, all
involved pedestrians remain at their cells with probability �. One of
them is randomly allowed to move to the desired cell with prob-
ability 1–�.

FIG. 2. Target cells for a pedestrian at the next time step. The
motion is restricted to the Neumann neighborhood in this model.

DAICHI YANAGISAWA AND KATSUHIRO NISHINARI PHYSICAL REVIEW E 76, 061117 �2007�

061117-2

EE EE

t t+1

EE

EE

or

µ

1 µ−

OOO OOO 2 2 1+

2 2 2+ 2 2 2+2 2 3+ 2 2 4+ 2 2 3+

2 2 1+

2 2

55

2 2

2 2

55

1
11 22S =

2

0E

1,0p1,0p−

0, 1p −

0,0p

0,1p



In the following, we consider only the effect of the SFF
and ignore the DFF for simplicity. Thus the steps 3 and 4 are
not considered in this paper. The DFF plays a role in mim-
icking the long-ranged interaction among pedestrians by a
short-ranged one. Therefore, ignoring the DFF is justified
when we consider pedestrian behaviors only near an exit as
we do here. We also confirm that results in this paper are not
significantly changed by the introduction of the DFF.

III. INTRODUCTION OF AN ADDITIONAL
PARAMETER NEAR THE EXIT

In real situations, pedestrian density depends on the area
in the room. While there are few pedestrians near a corner,
there are many pedestrians gathering around the exit. There-
fore, pedestrians often conflict with each other around the
exit, and an arc of pedestrians is likely to be formed in front
of the exit due to friction between them �2�. Figure 6 shows
the number of conflicts in an egress process in a competitive
situation in 10 000 time steps. The exit is set at �x ,y�
= �6,10� in the figure. We see 7842 conflicts at the exit cell,
about 1000 at the five Moore neighbor cells of the exit, and
fewer than 110 at other cells. This result says that more than
60% of conflicts occur at the exit cell, and the probability of
conflict there is about 80%. Since pedestrians know this fact
by experience, they walk fast when they are far from the exit,
while they walk slowly or give way to each other around the
exit. That is to say, the walking velocity depends on the area
in the room. In the usual FF model, however, the transition
probability, i.e., the walking velocity, is the same wherever
the pedestrians are. To take into account this situation, we
introduced a parameter �� �0,1� which we call the bottle-
neck parameter. The transition probability of pedestrians who
occupy one of the Neumann neighboring cells of the exit cell
is described as follows:

pij = �N̄�ij exp�− ksSij + kdDij� ��i, j� � �0,0�� ,

p0,0 = �1 − �� + �N̄ exp�− ksS0,0 + kdD0,0� , �3�

where N̄ is represented as

N̄ = 	

i,j

�ij exp�− ksSij + kdDij��−1
. �4�

The transition probability of other cells is the same as �2�.
Here, if �=0, pij =0 ��i , j�� �0,0�� and p0,0=1, which means
that nobody moves to the exit cell; while, if �=1, the tran-
sition probability is the same as �2�, which means that pedes-
trians move fast as they are far from the exit. � controls the
velocity of the pedestrians who are at the neighboring cells
of the exit. In Ref. �11�, the parameter ks is used to describe
the velocity of the pedestrians. However, since a small value
of ks means lack of knowledge of the exit position, pedestri-
ans sometimes move backward. In reality, pedestrians move
to the exit along the shortest path and slow down near the
exit to avoid conflicts with others. Therefore, � is not com-
pensated by ks, and we expect that more realistic pedestrian
behavior is described by the parameter �. When ks is large,
the transition probabilities of pedestrians at neighboring cells
of the exit are approximated as in Fig. 7. This simplification
enables us to analyze the pedestrian behavior theoretically.

IV. ANALYTICAL EXPRESSION FOR THE AVERAGE
FLOW USING THE CLUSTER APPROXIMATION

In the FF model with added �, when ks is large, it is
almost sure that pedestrians move to the exit cells with prob-
ability 1 if they are far from the exit and with probability �
in the Neumann neighboring cells of the exit. Therefore, in
this section we focus on the exit cells and their neighbor cells
and calculate an analytical expression for the average pedes-
trian flow through the exit by the cluster approximation. The
flow is defined as the number of evacuated persons per one
time step through an exit. We suppose that a big jam is
formed around the exit. This enables us to simplify the situ-
ation such that only the SFF affects the pedestrians’ motion.

First, we calculate the flow when the width of the exit
w=1. The transition probabilities are defined in Fig. 8. We
consider two kinds of states of a cell, 1 and 0, which repre-
sent that a pedestrian exists at the cell or not. Therefore, in
the case w=1, there are 16 different states for these four cells
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FIG. 6. Number of conflicts in a competitive situation. We simu-
lated in a room of 11�11 cells with one cell exit for 11 000 time
steps and accumulated the value for 1001–11 000 time steps. The
cell at �6,10� is the exit cell. We find that more than 60% of conflicts
occur at the exit cell, and the probability of conflict there is about
80%.

FIG. 7. Approximation of the transition probabilities at Neu-
mann neighboring cells of the exit when the width of the exit w
=1. When ks is large, p0,1→�, p0,0→1−�, and p0,−1,p1,0,p−1,0

→0 for a pedestrian A. Similarly, p1,0→� for a pedestrian B and
p−1,0→� for a pedestrian C.
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in total. Since we assume that a big jam exists at the exit,
pedestrians enter into three neighboring cells of the exit with
the probability 1. � is the probability of getting out from the
exit cell, which is set as 1 throughout this paper. We define
pt�0� as the probability that a pedestrian is not at the exit cell
at time step t and pt�1� as the probability that a pedestrian is
at the exit cell at time step t. The master equations are de-
scribed as follows:

�pt+1�0�
pt+1�1� 
 = �1 − r �

r 1 − �

�pt�0�

pt�1� 
 . �5�

Here r represents the probability that a pedestrian enters into
the exit cell from the three Neumann neighboring cells,
which is described as follows:

r = �1�1 − �2��1 − �3� + �2�1 − �3��1 − �1�

+ �3�1 − �1��1 − �2� + �1 − ����1�2�1 − �3�

+ �2�3�1 − �1� + �3�1�1 − �2� + �1�2�3� . �6�

The first term is the probability of a pedestrian coming
from the cell A �Fig. 8�. Similarly, the second and the third
terms are the probabilities of a pedestrian coming from the
cells B and C, respectively. The first three terms enclosed in
square brackets in the fourth term represent the probability
that one of the pedestrians enters into the exit cell from two
of the three cells �A, B, and C� by resolving the conflicts.
The last term enclosed in the square brackets represents a
similar situation, but pedestrians enter into the exit cell from
all three neighboring cells. By using �5� and �6� with the
normalization condition

pt�0� + pt�1� = 1, �7�

we obtain the stationary solution

p��1� = 1 −
�

� − a2 − a1 − a0 − ��a1 + 2a0�
, �8�

a0 = − �1�2�3,

a1 = �1�2 + �2�3 + �3�1,

a2 = − ��1 + �2 + �3� . �9�

Thus the number of pedestrians who can evacuate from an
exit with one cell’s width per one time step, i.e., the average
pedestrian flow through the exit, is described as follows:

�Q��1,�2,�3,�,��� = �p��1�

= �	1 −
�

� − a2 − a1 − a0 − ��a1 + 2a0�� .

�10�

The expression for the average flow in the case �=�1=�2
=�3=1 was obtained in Ref. �11� as

�Q� =
1 − �

2 − �
, �11�

which can be recovered using �Q�1, 1 , 1 , 1 , ���. Thus
�10� is a generalization of the previous result �11�.

Next we specify �10� by substituting 0 and � for �1, �2,
and �3 as follows:

�a� �q1��,��� � �Q��,0,0,�,��� =
��

� + �
,

�b� �q2��,�,��� � �Q��,�,0,�,���

= �	1 −
�

� + 2� − �1 + ���2� ,

FIG. 9. Three special cases of Fig. 8. The arrow with transition
probability 0 is interpreted as the existence of a wall that blocks
pedestrian motion.

FIG. 10. Dividing an exit with three cells into three exits with
one cell. The outflow also represents the sum of each flow.

FIG. 11. 5�5-cell rooms with a one-cell exit. �a� Ce exit. �b�
Co exit. E represents an exit cell, and Et represents an entrance cell
where pedestrians come with probability 1.

FIG. 8. Cluster approximation at the exit with one cell. 1, �, �1,
�2, and �3 represent transition probabilities.
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�c� �q3��,�,�����Q��,�,�,�,���

= �	1 −
�

� + 3� − 3�1 + ���2 + �1 + 2���3� .

�12�

These expressions describe average flows through an exit
with the configurations described in Fig. 9.

Finally, we calculate the average flow of pedestrians
through an exit with arbitrary width w�N. The relation be-
tween the width of an exit and the outflow is an important
study which has been investigated previously experimentally

�14,15�. When pedestrians move to the exit cell along the
shortest path, social morals may prevent pedestrians from
breaking into the line. Thus, they do not gather around the
exit in disorder, but tend to form lines in front of the exit.
Moreover, they do not easily change lanes in a crowd situa-
tion. There are also experimental results showing that the
pedestrian outflow increases linearly as the width of the exit
increases �15�. Therefore, we can represent the average flow
through the exit with cell width w by the linear sum of �q1�,
�q2�, and �q3�. Here we consider two types of exit: an exit at
the center of the wall �Ce exit� and an exit at the corner of
the room �Co exit�. The Ce exit �w	2� is divided into �q1�
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FIG. 12. Average flow �q� as a function of � for different �, exit width w, and exit location. �a� Ce exit, w=1. �b� Co exit, w=1. �c� Ce
exit, w=3. �d� Co exit, w=3. For �=0.9 we clearly see a maximum of flow at an optimal �. The lengths of the arrows A, B, C, and D
represent the differences between the flows for different �.

2 3 4 5 6 7 8
Door width w

0.5

1

1.5

2

2.5

3

3.5

4

egarev
A

wolf
Q

competitive theo.
cooperative theo.

competitive sim.

cooperative sim.

b Co exit

2 3 4 5 6 7 8
Door width w

0.5

1

1.5

2

2.5

3

3.5

4

egarev
A

wolf
Q

competitive theo.
cooperative theo.

competitive sim.

cooperative sim.

a Ce exit
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�b�.
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exits and �q2� exits, and the average flow through an exit
with cell width w, �Qcenter,w�, is described as

�Qcenter,w� = ��q3� �w = 1� ,

2�q2� + �w − 2��q1� �w 	 2� .
� �13�

In a similar way, the Co exit is divided into �q1� exits and
�q2� exits, and the average flow through an exit with cell
width w, �Qcorner,w�, is described as follows:

�Qcorner,w� = �q2� + �w − 1��q1� �w 	 1� . �14�

Examples of dividing Ce and Co exits �w=3� are shown
in Fig. 10. We also define the average flow per one cell as

�qcenter� = �Qcenter,w�/w ,

�qcorner� = �Qcorner,w�/w . �15�

V. COMPARING THE AVERAGE FLOWS FROM
ANALYSIS AND SIMULATION

In this section, we compare the analytical and computa-
tional results for the average flow �q�, which is a function of
�. The parameters of the FFs are set at ks=10 and kd=0.0 so
that pedestrians move to the exit along the shortest path. The
size of the room used in simulation is 11�11 cells. The Ce
exit room has the exit cells at the centers of the boundary
cells of one side of the room, and those of the other sides are
all entrance cells where pedestrians come in with the prob-
ability 1. Similarly, the Co exit room has the exit cells at the
corners of the room, and the boundary cells of two sides that
do not include the exit cells are all entrance cells. The ex-
amples of the 5�5 rooms are shown in Fig. 11. We simu-
lated 11 000 time steps with the initial condition that pedes-
trians occupy all cells except exit and obstacle cells. Then
the average flow of 10 000 time steps from 1001 to 11 000 is
used for Fig. 12. It shows average pedestrian flows at the exit
as a function of � for various � values. We see that the
simulations agree with the analytical results very well. The
errors become large for �=0.9 since pedestrians conflict
with each other and then they cannot move either to the exit
cells or to other cells. Surprisingly, for �=0.9, we clearly
find that a maximum flow is attained at one value of � in
both simulations and analytical results. We call it the optimal
�, denoted as �opt hereafter. For �→1 the number of un-
solved conflicts increases as � grows. As a result, pedestrians
stick and the average pedestrian flow decreases. We also find
that the differences between the flows for different � get
smaller as w increases, by comparing the lengths of the ar-
rows in Fig. 12, i.e., the arrow C is shorter than A and D is
shorter than B. For the same w the differences between the
flows for different � are smaller at the Co exit than at the Ce
exit since the arrow B is shorter than A and D is shorter than
C.

VI. COMPETITIVE AND COOPERATIVE BEHAVIOR
AND THE WIDTH OF AN EXIT

Kirchner et al. studied how the pedestrians’ mood influ-
ences the evacuation time �10�. Both the experimental and

the computational results show that competition is beneficial
if the exit exceeds a certain width, and harmful if the exit
width is lower than that. We explain this phenomenon by the
analytical solutions �13� and �14�. In Ref. �10�, competition
is described as increased assertiveness �large ks� and a strong
hindrance in conflict situations �large ��. Cooperation is rep-
resented by small ks and vanishing �. In our model, we de-
scribe the assertiveness using �. We use � as a parameter of
hindrance in conflict situations and its values are the same as
in Ref. �10�. The parameters are set at �=1.0, �=0.6 for the
competitive situation and �=0.4, �=0.0 for the cooperative
situation.

Figure 13 shows the average flows for variable door width
w. The results of analysis agree with those of the simulation
very well. The simulation conditions are the same as we
described in Sec. V; however, we used 12�12 rooms to set
up the exit at the center of the boundary cells of the room if
the width of the exit is an even number. The size of the room
does not influence the average flow since most of the cells
are occupied by pedestrians. Clearly, we can observe the
crossing of the two curves at a critical door width wc�3 in
Fig. 13�a�. Our result corresponds well to the result of Ref.
�10�, which is wc�2.5. This means that we should cooperate
with each other to increase the average pedestrian flow when
the width of the exit is small. On the contrary, when the
width of the exit is large, we do not have to give way to other
pedestrians and should go through the exit aggressively.
When the exit door is at the corner of the room, the crossing
is observed at wc�1.5 in Fig. 13�b�. Therefore, the Co exit is
more suitable for a competitive situation than the Ce exit.

The Japanese building standards law �16� gives an aver-
age pedestrian flow 1.5 persons / �m s� if an exit is directly
connected to the ground. We find that this value significantly
changes depending on the pedestrians’ moods, i.e., competi-
tive or cooperative. From Fig. 13 we obtain the values of the
average flow through the Ce exit, i.e., 1.5 persons / �m s� in
the competitive situation and 2.0 persons / �m s� in the coop-
erative situation. The values are calculated by defining the
cell size as 50�50 cm2 and using a pedestrian velocity of
1.3 m/s, which is according to the Japanese building stan-
dards law.
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FIG. 14. Curves of �c on the �-� plane. �a� w=1. �b� w	2. The
flow at the Co exit is larger than the flow at the Ce exit in the upper
right region in the figures. In the lower left region, the Ce exit flow
is larger.
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VII. COMPETITIVE AND COOPERATIVE BEHAVIOR
AND THE EFFECT OF A WALL

Here we compare the average flows of Ce and Co exits,
and discuss how a wall has an effect on them. The difference
between �Qcenter,w� and �Qcorner,w� is calculated as follows:

�Qcorner,w� − �Qcenter,w�

= �− �	� −
1

1 + 2�
��� − 1�A �w = 1� ,

�	� −
1

1 + �
�B �w 	 2� ,� �16�

where A and B are positive in the entire domain of � and �
and are described by

A =
�2�1 + 2��

�� + 2� − �1 + ���2�

�
1

�� + 3� − 3�1 + ���2 + �1 + 2���3�
,

B =
�2�1 + ��

�� + ���� + 2� − �1 + ���2�
. �17�

We obtain �c, which is the value of � where �Qcenter,w� equals
�Qcorner,w�, as follows:

�c = �
1

1 + 2�
�w = 1� ,

1

1 + �
�w 	 2� .� �18�

The curves of �18� are drawn in Fig. 14. They divide the �-�
plane into two regions. In the lower left region, the Ce exit
flow is larger and in the upper right region the Co exit flow is
larger. We also plot the competitive and cooperative situa-
tions used in Sec. VI. The figures show that the Co exit flow
is larger in the competitive situation since the wall prevents
pedestrians from rushing to the exit at the same time, but the
Ce exit flow is larger in the cooperative situation. From this
result, we can say that an exit should be at the center of a
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FIG. 15. Contours of average flows for various widths of the exit and its position. �a� Ce exit, w=1. �b� Co exit, w=1. �c� Ce exit, w
=3. �d� Co exit, w=3. � represents the competitive situation and � represents the cooperative situation given in Sec. VI. Black bold curves
represent �opt, which moves to the right in the order �a�, �b�, �c�, and �d�. In �a� and �b� flow in the cooperative situation is larger than that
in the competitive situation. In �c� the average flows are almost the same in both the competitive and the cooperative situations. In �d� flow
in the competitive situation is larger. These figures show that flow in the competitive situation gets larger than that in the cooperative
situation on increasing the width of the exit and also because of the effect of a wall.
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wall when pedestrians are in a cooperative mood, and at the
corner of the room when people are in a competitive mood.

VIII. CHANGE OF CONTOUR PLOTS
OF THE AVERAGE FLOW

The average pedestrian flow through an exit is decided by
three parameters: �, �, and � according to �10�. Since we
have set �=1 in this paper, the average flow is determined by
� and �. Figure 15 shows contour plots of the average flow,
in terms of � and �. Figures 15�a�–15�d� correspond to Figs.
12�a�–12�d�, respectively. The flow is large in the white re-
gion and small in the black region. The values of the flow are
normalized in each figure to draw the gray scale figures. The
thick curves in the figures are the curves of �opt, which gives
the maximum average flow in the case of a constant �. �opt
curves divide the plane into two regions. In the upper right
regions, pedestrians should slow down further to avoid a
conflict, and in the lower left regions, they have to speed up
to increase the average flow around the exit. We calculate
�opt1, �opt2, and �opt3 from �q1�, �q2�, and �q3� given in �12�,
respectively, as follows:

�opt1 = 1,

�opt2 =
1

1 + �
,

�opt3 =
1

1 + 2�
. �19�

The �opt expressions for �Qcenter,w� and �Qcorner,w� are
straightforward, but not expressed in a simple form, so we
omit them in this paper. We also plot the competitive and
cooperative situations used in Sec. VI in the figures.

We see that the �opt curves move to the right in the order
�a�, �b�, �c�, and �d�. This is explained by �13�, �14�, and �19�.
First, we compare the �opt curve positions of �opt1, �opt2, and
�opt3 in the �-� plane using �19�. The curve of �opt3 is the

furthest left, that of �opt2 is in the middle, and that of �opt1 is
the furthest right �Fig. 16�. Next, the expressions for the
average flow corresponding to �a�, �b�, �c�, and �d� are de-
scribed as follows:

Q�a� � �Qcenter�w = 1�� = �q3� ,

Q�b� � �Qcorner�w = 1�� = �q2� ,

Q�c� � �Qcenter�w = 3�� = 2�q2� + �q1� ,

Q�d� � �Qcorner�w = 3�� = �q2� + 2�q1� . �20�

Now we see clearly why the �opt curve of Q�b� is further
right than that of Q�a�. Q�c� includes �q2�+ �q1� more than
Q�b�, and Q�d� includes 2�q1� more than Q�b�. Therefore,
the �opt curve moves to the right in the order �a�, �b�, �c�, and
�d�.

In the lower left regions of the figures, the average flow
increases as � increases, but in the upper right regions, it
decreases as � increases for fixed �. Thus the flow-
increasing region expands as the �opt curves move to the
right. This makes an exit more suitable to the competitive
situation than the cooperative situation. We can see that in-
crease of the width of the exit and the effect of a wall make
the average flow larger in a competitive than in a cooperative
situation, since the �opt curves move to the right both on
increasing the width of the exit ��a�,�b� vs �c�,�d�� and by the
effect of a wall ��a�,�c� vs �b�,�d��.

IX. CONCLUSION

We have introduced into the FF model the effect of slow-
ing down of pedestrians around an exit, and obtained an
analytical expression for the average flow through an exit
with arbitrary width w cells by employing the cluster ap-
proximation. It turns out that the theoretical results agree
quite well with the simulations. The effects of pedestrian
mood, the width of the exit, and the wall effect are also
studied. The critical exit door width, which was obtained
experimentally and was reproduced by simulations in Ref.
�10�, is also analytically obtained in this paper. We find that
an exit should be at the center of a wall in a cooperative
situation, whereas it should be at the corner of the room in
the competitive situation for a smooth evacuation. The theo-
retical results also tell us that the unsolved conflicts between
pedestrians around the exit are the main cause of decrease in
the average pedestrian flow. Therefore, we should consider
how to decrease conflicts at a bottleneck to get large pedes-
trian outflow.

It is important to study pedestrian behavior quantitatively
by theoretical analysis, since its dynamics are mainly studied
by simulations so far. The Japanese building standards law
gives the average pedestrian flow through an exit as a con-
stant value 1.5 persons �m s��16�. Our expression for the av-
erage pedestrian flow is more precise and realistic; thus our
results can be applied to the design of buildings so that pe-
destrians evacuate safely and quickly. For example, many
present concert halls have an exit at the center of a wall;
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FIG. 16. Curves of �opt1, �opt2, and �opt3. We see that the curve
of �opt3 is the furthest left, that of �opt2 is in the middle, and that of
�opt1 is the furthest right.
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however, according to our study we can shorten the evacua-
tion time by setting up an exit at the corner of the hall when
people rush to the exit in a competitive mood.

In this paper, we consider the average flow through the
exit with more than one cell as the linear sum of the flows
through an exit with one cell. In a calm situation, social
morals prevent pedestrians from cutting into lines; however,
in a panic situation, the pedestrians break into lines to save

their lives. Introducing such interactions between neighbor-
ing cells of an exit in detail is the subject of future work.
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