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Propagation speed of a starting wave in a queue of pedestrians
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The propagation speed of a starting wave, which is a wave of people’s successive reactions in the relaxation
process of a queue, has an essential role for pedestrians and vehicles to achieve smooth movement. For example,
a queue of vehicles with appropriate headway (or density) alleviates traffic jams since the delay of reaction to
start is minimized. In this paper, we have investigated the fundamental relation between the propagation speed of
a starting wave and the initial density by both our mathematical model built on the stochastic cellular automata
and experimental measurements. Analysis of our mathematical model implies that the relation is characterized
by the power law αρ−β (β �= 1), and the experimental results verify this feature. Moreover, when the starting
wave is characterized by the power law (β > 1), we have revealed the existence of optimal density, where the
required time, i.e., the sum of the waiting time until the starting wave reaches the last pedestrian in a queue and
his/her travel time to pass the head position of the initial queue, is minimized. This optimal density inevitably
plays a significant role in achieving a smooth movement of crowds and vehicles in a queue.
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I. INTRODUCTION

Various kinds of self-driven many-particle (SDP) systems,
such as the evacuation dynamics of pedestrians and vehicular
traffic, have attracted a great deal of attention in a wide range of
fields during the last few decades [1–3]. Most of these complex
systems are interesting not only from the point of view of
natural sciences for fundamental understanding of how nature
works but also from the points of view of applied sciences
and engineering for the potential practical use of the results of
the investigations. Especially, interdisciplinary investigations
for the dynamics of jamming phenomena in SDP systems, so-
called Jamology, have progressed by developing sophisticated
mathematical models considered as a system of interacting
particles driven far from equilibrium with a central focus on
the jamming phenomena in traffic flow [4–25].

Some of these contributions to analyze the mechanism of
jamming formation indicate that one of the most important
factors to cause the jamming phenomena is a sensitivity which
indicates the time delay of the reaction of the particles to
the stimulus. As an example, if the reactions of drivers are
extremely sensitive, the drivers can avoid the traffic jam by
adjusting their behavior immediately to the movement of their
lead car [9,11]. The reaction time of pedestrians is similarly
important for smooth movement of crowds. For example, it
is a serious issue for organizers to achieve smooth movement
of a teeming number of athletes at the start of a marathon
since the athletes located at the rearward position have an
unavoidable delay in the queue, and this delay raises the
possibility of a traffic disturbance in the surrounding area. We
would like to point out that the wave of successive reactions
in a relaxation process in a queue, the so-called starting wave,
plays a significant role for the waiting time in a queuing system

of pedestrians and vehicles since a quick start in walking and
driving accomplishes the smoothest movement of crowds and
vehicles in a queue. In order to resolve a queue of pedestrians
and vehicles, the departure rate from the cluster should become
larger than the arrival rate in principle. From this point of
view, it is important to investigate the propagation speed of the
starting wave since the fast propagation speed of the starting
wave eventually actualizes a high departure rate.

In this paper we have investigated the propagation speed
of a starting wave of pedestrians and have found that the
fundamental relation between the velocity of the starting
wave and the initial density of people standing in the queue
is characterized by the power law αρ−β (β �= 1), using
numerical simulations based on our mathematical model and
experimental measurements. Moreover, we have also revealed
the existence of the optimal density, where the required time of
the last pedestrians in a queue is minimized. The required time
is the sum of the waiting time until the starting wave reaches
the last pedestrian in a queue and his/her travel time to pass
the head position of the initial queue.

This paper is organized as follows. In Sec. II, we propose
the mathematical model for pedestrians walking built on the
stochastic cellular automaton in analogy with the mathematical
models for vehicular traffic. The fundamental relation between
the velocity of the starting wave and the initial density is
investigated by both numerical simulations and analytical
calculations for our model in Sec. III. Then, the existence
of optimal density, which minimizes the required time in a
queue, is shown in Sec. IV. In Sec. V, the results obtained
from our mathematical model are verified by experimental
measurements of real pedestrians. Finally, Sec. VI is devoted
to the concluding discussions.
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II. MATHEMATICAL MODEL FOR PEDESTRIANS
WALKING IN A QUEUE

In this section, we explain in detail our mathematical model
built on the stochastic cellular automaton models, such as
Asymmetric Simple Exclusion Process (ASEP) [26–28] and
Zero Range Process (ZRP) [29–31], which can capture the fun-
damental features of jamming phenomena in various collective
dynamical systems. Here, let us briefly introduce a discrete-
time version of the stochastic cellular automaton models; that
is, the entry rate α, hopping rate p, and exit rates β are replaced
by probabilities at each time step. ASEP is considered as a
model of interacting random walks which consists of a large
number of walkers on a one-dimensional lattice. These walkers
move with probability p to the right and with probability q

to the left. Especially, the motion of the walkers is allowed
only in one direction in the case of q = 0, so-called Totally
Asymmetric Simple Exclusion Process (TASEP), which is the
paradigmatic model of all transport processes [see Fig. 1(a)].
ZRP is also considered as a mass transport model after ap-
propriate exact mapping to an asymmetric exclusion process;
however, the hopping probability depends on the distance
to the next particle in front [see Fig. 1(b)]. If the hopping
probability in ZRP does not depend on the distance to the next
particle in front, ZRP reduces to TASEP. Particularly, these
cellular automaton models are more suitable for describing the
queuing system for pedestrians than the mathematical model
based on the traditional queuing theory [32], such as a queuing
process M/M/1. The first and second “M” represents Poisson
arrivals and exponential service times, respectively, and the
last “1” indicates that the number of service windows. The
M/M/1 does not include the effect of spatial structure; however,
cellular automaton models can consider both spatial structure
and the excluded-volume effect explicitly. In fact, an extension
of the M/M/1 queuing process with a spatial structure and
excluded-volume effect was recently introduced [33–35], and
its dynamical features are analyzed [36] as the ASEP on a
semi-infinite chain with an open boundary.

Now, we explain our model for pedestrians walking in a
queue. Let us imagine that the passage is partitioned into L

identical cells and that each cell can accommodate at most one
particle (pedestrian) at a time, enforcing the excluded-volume
effect. Note that, in the following, we refer to “particle” as a
representation of a pedestrian in our model and “pedestrian”
as a person. The length of each cell corresponds to 0.5 m
by considering the reasonable volume-exclusion effect of

(a) TASEP with open boundary condition.

(b) ZRP with open boundary condition.

FIG. 1. The schematic view of two mass transport models with
discrete time. Particles are inserted with probability α at the left
boundary if the left cell is empty. Particles are removed from the right
cell with probability β.

FIG. 2. Schematic view of the time development of our
mathematical model for the parameters (N,L,h̄) = (5,10,1) in the
case of Vmax = 2. Each number indicates the particle label. Only
black particles can move forward with p(h) (white arrow) or Vmax

(gray arrow). A white arrow indicates a particle that moves forward
for the first time with probability p(h) in this dynamics, whereas a
gray arrow indicates a particle that moves forward with maximum
velocity Vmax after the particle has moved once. The dotted line at
the right boundary corresponds to the open boundary condition;
that is, particles leave from the system via the right boundary. The
dashed line next to the dotted line indicates the starting line; that is,
the propagation speed of the starting wave is calculated by the length
from this starting line to the left boundary.

pedestrians, as noted in Sec. III. N (2 � N � L) indicates
the total number of particles whose initial interval distances
are equally set as h̄ cell. We mention the case N = 1 briefly
here. Our model can naturally consider the case N = 1;
however, N = 1 is omitted in our model since we focus on
the propagation dynamics of the starting wave; that is, the
requisite number of particles is more than 1. The parameters
(N,L,h̄) satisfy the equally spaced condition as follows:

h̄ = L

N
− 1. (1)

We impose the semiopen boundary condition, where par-
ticles walk away from the right boundary. The update rules
of our cellular automaton model are applied in parallel to
all particles as follows (also see Fig. 2): First of all (t = 0),
only the particle at the head of a queue (particle 1) moves
forward with hopping probability p(h), which depends on
its current headway distance h, defined by the vacant cells
in front of it. The function form of p(h) is defined by
the experimental data as we describe later. In the case of
particle 1 we assume the hopping probability as p(∞) since
there is no predecessor. Note that, in order to investigate the
propagation speed of successive reactions in this study, none
of the following particles can move forward before the starting
wave reaches them. Then (t = 1) the following particle (the
second particle in the queue, i.e., particle 2) can move forward
with probability p(h). In the case of Fig. 2, this probability p(h)
at time t = 1 corresponds to p(2). At this time the first particle
(particle 1) also can move forward deterministically with
maximum velocity Vmax since the usual maximum velocity
in the solvable stochastic cellular automaton models, which
corresponds to one cell per one time step, is not fast enough to
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treat the situation of fast walking or running. Especially, it is
natural to introduce Vmax since athletes seldom stop under our
assumption of the start of a marathon. Accordingly, a particle
can move forward with probability p(h) for the first time after
the starting wave has reached it, and then the particle can move
forward deterministically with maximum velocity Vmax. After
the second particle moves forward, the next particle can also
start to move with probability p(h) in sequence. Finally, the
last (particle 5 in the case of Fig. 2) moves forward at the time
t = S − 1. As just described, the following particles can start
to move forward in our model only if the next cell is empty and
the predecessor has already started, unlike the usual stochastic
cellular automaton models, such as ASEP and ZRP.

The hopping probability p(h), which indicates the velocity
of particles as noted before, is given in analogy to the idea of the
optimal velocity (OV) function, which is often introduced into
mathematical models for vehicular traffic [6,11,37] and the
desired velocity which is considered in pedestrian dynamics
[15]. This kind of velocity of drivers and pedestrians depends
on their headway distance (or density), namely, the vacant
space in front of them. This function is motivated by the
common expectation that drivers and pedestrians have the
desired velocity and will adjust their behavior accordingly.
That is, the velocity must be reduced and become small
enough to prevent crashing into the preceding particle when the
headway is short. Whereas when the headway is long, particles
can move at their velocity in free flow, which corresponds to
the legal velocity for vehicular traffic.

In order to provide the headway-dependent hopping prob-
ability, let us start the density-dependent OV function for
pedestrians walking as a linear-type function for simplicity:

V (ρ) = V0

(
1 − ρ

ρm

)
, (2)

which is often used in the traffic flow model built on fluid
dynamics [5,37]. The constant values V0 and ρm indicate
the velocity of particles in free flow and the density at a
complete standstill, respectively. Relation (2) gives us the
headway-dependent OV function by translating the headway
distance into the reciprocal of the density as h ∼ 1/ρ.
In order to translate the OV function obtained from the
experimental data to the stochastic cellular automaton model,
the OV function is shifted so that the function passes through
the origin in consideration of the excluded-volume effect
�h = 1/ρm; that is, the headway h is assigned to h + �h in the
OV function to satisfy the condition V (h)|h=0 = 0. Moreover,
measurement units of length (meters) and time (seconds) are
converted to model units of length (cells) and time (steps) by
1 m = κ cells and 1 s = λ steps. Under these transformations,
we obtain the OV function for the cellular automaton model as

V (h) = κ

λ
V0

(
1 − 1

ρm(h + �h)

)
. (3)

In our cellular automaton model, the velocity is considered
as the hopping probability p(h). We assume that the free
hopping probability satisfies p(h) = 1 if h � μ, where μ is a
given parameter, so that the headway is large enough to move
smoothly. After the velocity is normalized so that p(μ) = 1,
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FIG. 3. The linear-type relation between walking velocity V and
density ρ from the experimental data [38].

we have obtained the hopping probability as

p(h) =
{

μ+�h

h+�h

ρm(h+�h)−1
ρm(μ+�h)−1 (h � μ),

1 (h > μ).
(4)

This hopping probability satisfies p(0) = 0 since ρm�h = 1.

III. NUMERICAL RESULTS FOR PROPAGATION SPEED

In our numerical simulations, we have estimated the
propagation speed of the starting wave under several den-
sities, which are decided by the initial number of parti-
cles in a queue. As shown in Fig. 3, let us approximate
the experimental data of pedestrians walking on a circular
passage way [38] as the form (2). From this fitting, V0

and ρm are 1.24994 and 2.06615, respectively. Moreover,
we have obtained the conversion 1 step ∼ 0.4 s and 1 cell
∼ 0.5 m; that is, 1 s ∼ λ = 2.5 steps and 1 m ∼ κ = 2
cells, which are calculated by the value of V0 ∼ 1.25 m/s
and ρm ∼ 2.0. We have found from (4) that these values λ, κ ,
and V0 do not need to obtain the form p(h). However, these
values are important for converting the values obtained from
the model to the actual values. Here we assume μ = 5 as the
headway large enough to move smoothly. Then we obtain the
hopping probability p(h) for our mathematical model, which
is given by

p(h) =
{

0.596798h
0.483992+0.5h

(h � 5),
1 (h > 5),

(5)

as shown in Fig. 4. Taking into account the conversions 1
step = 0.4 s and 1 cell = 0.5 m, the propagation speed a is
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FIG. 4. Hopping probability function p(h) used in our mathemat-
ical model.
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FIG. 5. The simulation results (dots) and fitting relation (dashed
curve or dashed line) between the propagation speed of the starting
wave and the initial density of pedestrians from our mathematical
model. (top) The normal plot and (bottom) the double logarithmic
plot. The case of ASEP (p = 1.0) is also plotted in the top panel for
reference.

calculated by

a = 0.5(L − 1)

0.4S
, (6)

where S is the required steps for the last particle to start walking
(see Fig. 2), which is obtained from the numerical simulations.

As a significant result, we have found the power law in the
relation between the propagation speed of the starting wave
and the initial density of pedestrians, as shown in Fig. 5. Each
plot corresponds to the average velocity after 100 iterations
of numerical simulations. Taking into account this power
law, we have assumed the following simple relation between
propagation speed and the initial density of pedestrians, in
analogy with the sonic speed of gas:

a(ρ) = αρ−β, (7)

where ρ and a are the initial density and the propagation speed
of the starting wave, respectively. In our mathematical model,
this density ρ is defined by ρ = N/L. α and β indicate positive
parameters. By fitting these simulation results for Vmax = 6,
we have obtained the parameter values

(α,β) = (2.13,1.16). (8)

Note that the simulation result obtained from our mathemat-
ical model in the low density region, where h̄ = 4[p(h) = 1.0],
corresponds to the case of ASEP with p = 1.0, as shown in
Fig. 5. In the case of ASEP, we know β = 1, which corresponds
to the solid curve in the top plot of Fig. 5. This indicates that
the propagation speed is linearly proportional to the headway;
that is, it is trivial that the required time minimizes in the
lowest headway. However, the interesting fact here is that
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FIG. 6. The relativity plots between (α,β) and Vmax.

the propagation speed obtained from the mathematical model
shows the nonlinearity, i.e., β �= 1. Moreover, the value set
of (α,β) is nearly independent of Vmax, as shown in Fig. 6.
When the initial headway is large (h̄ � 4), the propagation
speed a does not depend on the value of Vmax in principle.
However, when the initial headway is small (h̄ < 4), the
hopping probability p(h) does not equal to 1 because h < 5.
From this viewpoint, the propagation speed of the starting
wave depends on Vmax. However, this situation where p(h) �= 1
has little effect on the propagation speed since the delay
time due to p(h) �= 1 is small enough compared to the total
waiting time. Actually, the value set in the case Vmax = 1 is
(α,β) = (2.08,1.18).

These parameters (α,β) can be calculated when the hopping
probability is described as (5) and Vmax � 4. Under these
conditions, the expectation value of the required steps S for
the last particle to start walking is given by

S =
N−1∑
k=0

(
N − 1

k

)
p(h̄ + 1)N−1−k[1 − p(h̄ + 1)]k(N + k)

(9)

= N + (N − 1)[1 − p(h̄ + 1)] (10)

since particles only stop once with probability 1 − p(h̄ + 1) at
most. That is, if a particle stops with probability 1 − p(h̄ + 1)
at time t , then the predecessor moves forward with Vmax. There-
fore, if Vmax � 4, the probability of the particle that did not
move forward at time t changes to p(h) = 1 at time t + 1 since
the headway changes from h = 1 at time t to h = 5 at time
t + 1. From (6), we obtain the propagation speed for each given
headway distance h̄. This data set provides the parameters

(α,β) = (2.13,1.15) (11)

from the fitting form (7). The parameters have a good
agreement in both numerical simulations [Eq. (8)] and
analytical calculations [Eq. (11)]. The results obtained from
our mathematical model show that the value of β does not
equal to 1. In the next section we investigate the existence of
the optimal density which minimizes the required time in a
queue by taking into account this nonlinearity.

IV. OPTIMIZATION OF INITIAL DISTRIBUTION

Now, let us apply this fundamental relation (7) to the
optimization of initial distribution for a long queue, for
example, a teeming number of athletes in a marathon. This
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issue is quite important for organizers to achieve smooth
movement of crowds since the athletes located in the rearward
position have an unavoidable delay to pass the head of the
initial queue. This delay makes the time for traffic restraint
longer and raises the possibility of a traffic disturbance in
the surrounding area. Moreover, if there is an optimal density
to minimize the delay time, controlling the density reduces
the waste of time waiting in a queue. If athletes stand in
line with large headway (low density), the starting wave
propagates quickly, but the queue becomes long. However,
if they stand in line with small headway (high density), the
starting wave propagates slowly, but the queue becomes short.
Which situation decreases the delay to pass the starting line?
This problem, which explicitly takes into account the effect of
the starting wave with a power law, has not been investigated
yet. Thus, the optimal initial density which minimizes the
required time in a queue is investigated here. Note that, if the
hopping probability p(h) is always constant and the initial
headway distance corresponds to zero, our model is reduced
to ASEP with the step initial condition. In this situation, the
probability distribution of the required time can be obtained
exactly in [39–41].

We set the problem as follows: Which density minimizes the
required time for the last pedestrian to pass the head position
of the initial queue? We generally set N as the total number
of pedestrians. L and T indicate the length of the initial queue
and the required time of the last pedestrian to pass the head of
the initial queue, respectively. Note that this required time T is
the sum of the waiting time until the starting wave reaches the
last pedestrian in the queue and that pedestrian’s travel time to
the head of the initial queue. The initial equally spaced density
ρ0 is calculated as ρ0 = N/L.

As shown in Fig. 7, numerical results based on our
mathematical model reveal that the minimum value of the
required time exists at the initial density ρ = 1.0 and 0.667 in
the case of high maximum walking velocity Vmax = 6 and 11,
respectively. If the maximum velocity is not large enough, such
as in the ZRP case (Vmax = 1), the required time is minimized
in the extremely high density; that is, the packed situation is
optimal to reduce the delay since the propagation speed is
sufficiently faster than the walking velocity. However, if the
walking velocity takes a higher value, an optimal density exists
in the lower-density region.
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FIG. 7. Required time plots in numerical simulations for maxi-
mum velocity Vmax = 6 and 11.

The required time T for given initial density ρ0 is calculated
as

T (ρ0) = L

a(ρ0)
+ L

Vmax
. (12)

The first and second terms on the right-hand side in (12)
indicate the waiting time to start walking and the travel time
to reach the head position of the initial queue after starting
to walk, respectively. Substituting the density ρ0 = N/L, (12)
translates as follows:

T (ρ0) = N

(
1

ρ0a(ρ0)
+ 1

ρ0Vmax

)
. (13)

Substituting relation (7) into (13), one obtains the first
derivative of T (ρ0) as

1

N

dT (ρ0)

dρ0
= − 1

ρ2
0

[
1 − β

α
ρ

β

0 + 1

Vmax

]
. (14)

Moreover, the initial density which satisfies the extreme value
dT /dρ0 = 0 is calculated by

ρ
β

0 = α

Vmax(β − 1)
. (15)

The condition β > 1 is necessary for the existence of ρ0 since
the parameters α,β, and Vmax are all positive. The value of
β ∼ 1.16, as noted before, is larger than 1. Therefore, it is
found that an optimal density does exist for given parameters
α,β, and Vmax. Moreover, (15) tells us that the optimal density
becomes lower as the walking velocity Vmax becomes faster
since parameters α and β are constant and are independent of
the value of Vmax, as shown in Fig. 6.

V. EXPERIMENTS

The validity of the numerical simulations and analytical
calculations of our mathematical model is supported by
experimental measurements. In our experiments, we have
measured the propagation speed of a starting wave and the
required time in a queue to pass the head position of the initial
queue under various densities, which are decided by the initial
number of pedestrians along a line and the length of the queue
as well as our mathematical model.

First, we made a long straight passage (L meters) and put
marks with a distance of 0.5 m between them, as shown in
Fig. 8. Detailed information of the experimental setting is
shown in Table I. As an initial condition for the pedestrians, all
pedestrians N stand in line with the same headway distance.
For example, Fig. 9 shows the various initial densities in a
queue. After that, the leader of queue starts to walk after being
given a cue, and then we measure the waiting time and the
required time, which are the time until the last pedestrian
starts to walk and the time until the last pedestrian passes

FIG. 8. Setting of our experimental passage.

036113-5



TOMOEDA, YANAGISAWA, IMAMURA, AND NISHINARI PHYSICAL REVIEW E 86, 036113 (2012)

TABLE I. Experimental settings: the length of the passage L, the number of pedestrians N (the number of women in a queue), the density
ρ calculated by N/L, the number of trials, and information about the pedestrians.

Number
Experiment L N ρ of trials Information about the pedestrians

EX1 5 10 (1) 2.0 3 High school students.
EX2 20 20 (7) 1.0 2 Public men and women. Recruiting terms: walking speeds: over 1.0 m/s.

20 30 (8) 1.5 3
EX3 5 10 (1,3) 2.0 11a Public men and women. Recruiting terms: walking speeds: over 1.0 m/s.
EX4 15 5 (0) 0.33 2 Public men. Recruiting terms: walking speeds: over 1.0 m/s; age restriction: 18–39.

6 (0) 0.4 2
8 (0) 0.53 2

10 (0) 0.67 3
15 (0) 1.0 3
16 (0) 1.07 1
20 (0) 1.33 3
25 (0) 1.67 2
30 (0) 2.0 4

EX5 10 10 (0) 1.0 3 Public men. Recruiting terms: walking speeds: over 1.0 m/s; age restriction: 18–39.
20 (0) 2.0 2
30 (0) 3.0 2
40 (0) 4.0 3

EX6 10 20 (0) 2.0 2 Public men. Recruiting terms: walking speeds: over 1.0 m/s; age restriction: 18–39.
40 (0) 4.0 2

EX7 20 30 (0) 1.5 2 Public men. (Recruiting terms) Walking speeds: over 1.0 meter per second Age restriction: 18–39
12 30 (0) 2.5 2

EX8 8.5 5 (0) 0.59 2 University students and postdoctoral researchers. Age: 20–39.
9 7 (0) 0.78 2
2.5 10 (2) 4.0 14b

3.3 10 (2) 3.0 15c

5 10 (2) 2.0 10d

10 10 (2) 1.0 13e

EX9 10 10 (1) 1.0 10f University students and postdoctoral researchers. Age: 20–39.
16 16 (3) 1.0 1
5 10 (2) 2.0 10g

8 16 (3) 2.0 1
3.3 10 (0) 3.0 18
5.5 16 (3) 3.0 1
2.5 10 (0) 4.0 21
4 16 (3) 4.0 1

aOne woman participated in 5 trials out of 11. Three women participated in the other 6 trials.
bTwo women participated in 3 trials out of 14.
cTwo women participated in 2 trials out of 15.
dTwo women participated in 2 trials out of 10.
eTwo women participated in 1 trial out of 13.
fOne woman participated in 3 trials out of 10.
gTwo women participated in 3 trials out of 10.

the head position of the initial queue, respectively. Thus, we
have obtained the propagation speed of successive reactions,
which is calculated from the length of the initial queue divided
by the waiting time under each given density determined
by a combination of L and N . Moreover, the required time
corresponds to the delay time from the cue to pass the head
position of the queue. Similar to the numerical simulations,
we have obtained the set of parameters (α,β),

(α,β) = (2.90,1.36), (16)

by fitting our experimental data based on (7), as shown in
Fig. 10. Comparing the fitting function based on (7) and

the data, we have found that the fitting function is quite
suitable for describing the relation between the initial density
of pedestrians and the propagation speed of the starting wave in
pedestrian dynamics even for results obtained from different
pedestrians. If the power index β equals 1, the propagation
speed is linearly proportional to the headway (reciprocal
to the density), as noted before. However, the index β of
our experimental results does not equal 1. What we would
emphasize here is that our actual experiments have proven
that the power law captures well a characteristic feature of the
starting wave, that is, the relation between the propagation
speed of the starting wave and the initial density, as well
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FIG. 9. (Color online) Snapshots of the various initial densities
in a queue: (a) ρ = 1.0, (b) ρ = 2.0, (c) ρ = 3.0, and (d) ρ = 4.0.

as the results from our mathematical model. Moreover, its
nonlinearity, i.e., β �= 1 and β > 1, satisfies the requirements
for optimizing the initial density of a queue.

On the other hand, the value of β is not in full agree-
ment between our mathematical model and experiments (see
Fig. 11). The reason for this difference is that we apply the OV
function from the results of walking on a circular passage
way in our model, whereas pedestrians walk in a straight
passage way and they are ready to start in our experiments.
That is, since they become more sensitive to the start in
this situation than in the case of a circular passage way, the
propagation speed becomes faster in the lower-density region.
In the higher-density region, the propagation speed is almost
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FIG. 10. The experimental results and fitting relation (dashed
curve or dashed line) between the propagation speed of the starting
wave and the initial density of pedestrians. (top) The normal plot and
(bottom) the double logarithmic plot.
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FIG. 11. The comparison between our mathematical model (8)
and experiments (16). Both plots are given by fitting form (7).

the same due to physical constraint. Actually, when we neglect
the data in the low-density region, the set of values {α,β}
changes to {2.63,1.18} in the region 1 � ρ � 4 (the number
of data is 165) and {2.61,1.16} in the region 2 � ρ � 4 (the
number of data is 122). Our major argument in this paper is that
the fundamental relation is well approximated by a power law,
particularly β �= 1 and β > 1; that is, the propagation speed
of the starting wave shows nonlinearity.

In the previous section our mathematical model with a
high walking velocity showed the existence of an optimal
density to minimize the required time in a density region in
response to the common expectation that an optimal density
exists since both opposite extreme situations make the required
time longer. The required time in the case of high velocity is
plotted in Fig. 12. Each required time is the average value
of a couple of trials. As shown in Fig. 12, we have observed
that the optimal density to minimize the required time surely
exists at the initial density ρ = 3.0 by comparing results
among four densities. Thus, we have confirmed the common
expectation by both a mathematical model and substantiative
experiments.

VI. CONCLUDING DISCUSSION

In this paper, we have investigated the propagation speed
of pedestrians’ reactions in the relaxation process of a queue,
the so-called starting wave, toward a smooth movement of
crowds since a fast starting wave achieves a high departure
rate. We first proposed our mathematical model, which is built
on the stochastic cellular automaton models, in analogy with
the mathematical modeling for traffic flow; then we revealed a
special relation between the propagation speed of pedestrians’
reactions and the initial density, which is well approximated
by the power law a = αρ−β (β �= 1) by using numerical
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Density

1

2

3

4

5

Required Time T

FIG. 12. The required time for each initial density from experi-
ments.
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simulations and analytical calculations. Moreover, we also
found the existence of optimal density, where the required
time of the last pedestrians to pass the starting line for the
initial queue is minimized. The requirement for the existence
of optimal density from our mathematical model is β > 1.
Especially, if the walking velocity is very small, the value
of the optimal density is detached from reality. However, the
optimal density is suitable to apply to a real situation, such as
a queue of athletes at the start in a marathon, since the optimal
density becomes lower as the walking velocity increases.

The power law was verified by actual experiments, and
the experimental results show a good agreement with the
results from modeling and its analysis. Moreover, we have
observed that the optimal density to minimize the required
time surely exists at a density by comparing results among
four densities in the experiments, as seen in the analysis of

our mathematical model. However, experimental verification
of the optimal density under various densities and velocities
is an issue for the future. This optimal density inevitably
plays a significant role to design not only the initial queue
of pedestrians but also traffic intersections and signals.
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