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Pedestrian flow through multiple bottlenecks
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We investigate the dynamics of the evacuation process with multiple bottlenecks using the floor field model.
To deal with this problem, we first focus on a part of the system and report its microscopic behavior. The system
is controlled by parameters of inflow and the competitiveness of the pedestrians, and large inflow leads to a
congested situation. Through simulations, the metastable state induced by conflicts of pedestrians is observed.
The metastability is related to the phase transition from free flow to congestion. The critical condition of the
transition is theoretically derived. In addition, we give simulation results of situations with multiple bottlenecks.
They imply that local improvement of pedestrian flow sometimes adversely affects the total evacuation time, and
that the total optimization of the system is not straightforward.
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I. INTRODUCTION

Dynamical behavior of crowds has attracted many physi-
cists over the last decades for its nontrivial characteristics [1,2].
The motion of pedestrians can be regarded as a problem of
a many-body system of “self-driven” particles. In order to
investigate the collective phenomena of the system, many
microscopic models have been developed: the social force
model [3], the floor field (FF) model [4–12], the lattice gas
model [13], etc. In addition to the simulations, much effort
has also been devoted to experimental studies [14,15]. In this
research field, the evacuation of crowds has been vigorously
studied since it is of great importance to design buildings
properly for the case of emergency, in the context of risk
management [16]. One remarkable phenomenon observed
during evacuation is the clustering of pedestrians at bottlenecks
such as exits (arching). When more than one pedestrian tries
to move to the same place, the conflict occurs, decreasing
the outflow of pedestrians. The effect of the conflict is a
dominant factor of total evacuation time; however, only a
few theoretical analyses have been performed so far [6–9]. In
previous studies, the evacuation process from a single room has
mainly been investigated. However, in an actual emergency,
the pedestrian flow experiences many bottlenecks and merges
together toward the exit. To the authors’ knowledge, no
systematic approach to evacuation from complex buildings
has been proposed. This study provides a first step toward the
understanding of the problem. First, as illustrated in Fig. 1,
we abstract the most important factors, i.e., bottlenecks and
their connectivity as a network. By considering this kind of a
general network, one can apply our results to a broad range
of practical problems. In this study, different from most other
studies of networks, each node itself has a complex dynamics;
we therefore begin by focusing on a single segment of the
network.
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In this paper, the overall argument is based on the FF
model, which is one of the well-established cellular automata
models for describing the pedestrian dynamics. The model is
convenient not only for simplicity and ease of use, but for its
extensibility [5–12].

The effect of the conflict was first implemented in the FF
model by introducing the friction parameter in Refs. [5,6].
In the present study, we use a more general version of the
friction parameter, namely, the friction function, which was
first proposed in Ref. [8]. The motion of pedestrians involved
in the conflict is canceled with a certain probability determined
by the friction function, which controls the strength of clogging
and sticking among pedestrians.

In addition to exits, we set an entrance providing the system
with pedestrians with a certain probability every time step. The
stochastic entrance is convenient for us to control the inflow
of pedestrians [9,10], and by regarding it as inflow from an
exit of the previous bottleneck, we can evaluate the effect of
connectivity of the bottlenecks.

The rest of this paper is organized as follows: Section II
gives the definition of the model. In Sec. III, simulation
results are shown. To explain the phenomenon analytically,
we propose the second-order cluster approximation in Sec. IV.
Finally, we summarize the argument in Sec. V.

II. MODEL

A. Floor field model

We consider a two-dimensional lattice representing a room
with an entrance and exit, consisting of N × N sites labeled
(i,j ) (i,j = 1,2, . . . ,N ). Each site can contain only one
pedestrian at most. Every time step, pedestrians choose one
destination site out of their five neighboring sites including the
present site: (i,j ), (i + 1,j ), (i − 1,j ), (i,j + 1), and (i,j − 1)
(see Fig. 2), according to two types of FF’s. One of the FF’s
is the static FF (Sij ) describing the shortest distance to the
exit site, and the other is the dynamic FF (Dij ) expressing
the total number of pedestrians who have visited the site. The
dynamic FF has the dynamics of diffusion and decay, unlike
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FIG. 1. Schematic diagram of pedestrian evacuation from a
building. A single segment enclosed with dotted lines is mainly
focused on.

the static FF [4]. The transition probability pij for a jump
to the neighboring site (i,j ) is determined by the following
expression:

pij = Zξij exp (−ksSij + kdDij ), (1)

where ks and kd are non-negative sensitivity parameters and Z

stands for the normalization factor. ξ returns 0 for forbidden
transitions such as to a wall, an obstacle, and neighboring
occupied sites, and returns 1 for other transitions. In this paper,
the static FF is given by the L2 norm as

Sij =
√

(xij − xex)2 + (yij − yex)2, (2)

where (xij ,yij ) and (xex,yex) are the coordinates of the site (i,j )
and the exit site, respectively. On the other hand, we ignore
the effect of the dynamic FF (kd = 0) since it does not greatly
affect the arguments in this work [17].

FIG. 2. Update rules. Each pedestrian can hop to its neighboring
sites or stay at its present site in a time step. Pedestrians enter the area
from the entrance with the probability α, and leave the area from the
exit with the probability β = 1.

B. Conflict resolution

Due to the use of parallel update it happens that more
than one pedestrian tries to choose the same site, which is
called the conflict. The simplest solution of the conflict is
to choose one pedestrian randomly to move to the site, and
keep other pedestrians at their present sites. However, in
actual situations, pedestrian flow is often clogged by more
than one pedestrian moving at the same time. To model
this effect, the friction parameter has been introduced [5,6],
and many significant results have been obtained so far. In a
recent study [8], the friction function has been proposed to
describe the effect more precisely. In the friction function, the
number of pedestrians involved in the conflict k is reflected
to its resolution probability. In this paper, we assume φ in the
following form as in Refs. [8,9]:

φ(ζ,k) = 1 − (1 − ζ )k − kζ (1 − ζ )k−1. (3)

Here, ζ ∈ [0,1] is the friction coefficient representing the
strength of the clogging irrelevant to k. This φ is a monoton-
ically increasing function of k and ζ . Note that this choice
of φ is one of the possible expressions. If one takes the
friction function independent of k, it coincides with the friction
parameter.

Each conflict is resolved with probability 1 − φ(ζ,k), and
one of k pedestrians is randomly selected to move to the site;
otherwise, the conflict remains.

C. Entrance and exit

In each time step, a pedestrian is provided to an entrance
site with the probability α ∈ [0,1] if the site is empty, and
removed from an exit site with probability β. (See Fig. 2.) In
this paper, we assume that each room has enough space so
that pedestrians at exit sites are smoothly accepted to the next
room, namely, β = 1.

III. SIMULATIONS

In the following, we set ks = 10 [18]. The dimensions of the
simulation area are 25 × 25, and one entrance site and one exit
site are set at (13,25) and (13,1), respectively. In this section
we see some simulation results, varying the inflow probability
α and the conflict coefficient ζ .

A. Metastability of pedestrian flow

In Fig. 3, the average pedestrian outflow through the exit
q is plotted. Here, the density ρ is defined as the number
of pedestrians in the room divided by the number of sites in
the area, 25 × 25. We performed simulations for 100 000 time
steps for each inflow probability α = 0.1,0.2, . . . ,0.6 with
the initial condition that no pedestrian is set in the system.
The simulation results of the flux and density are averaged
over every 100 time steps. The relation between the flux and
density is often referred to as the fundamental diagram in the
context of traffic flow, and in vehicular traffic the metastable
state is observed in the fundamental diagram. The metastable
state indicates an unstable state with high flux and density
before falling to the jammed state, and at the same density we
can see multiple fluxes corresponding to the metastable state
and jammed state, in a certain regime of density. Interestingly,
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(a) (b)

FIG. 3. (Color online) Fundamental diagram of the system in the competitive parameter regime [(a)ζ = 0.8] and the cooperative parameter
regime [(b)ζ = 0.0]. Each plot is obtained by setting the inflow probability α = 0.1,0.2, . . . ,0.6 and averaging the flux and density over 100
time steps.

the metastability is observed also in this problem. While in
vehicular traffic flow, the metastability comes from the effect of
inertia of vehicles; in this case, the conflict plays an important
role for pedestrian traffic. If the conflict occurs at the exit,
outflow is decreased; therefore, even for the small density of
pedestrians in the system, the jammed flux can be observed
by the concentration of pedestrians at the exit. On the other
hand, if the pedestrians are dispersed and in the state of free
flow, the system can keep large flux. This is the mechanism by
which the metastability is induced in the pedestrian bottleneck.
Consistent with these arguments, the metastability cannot be
observed when ζ = 0 [Fig. 3(b)].

Next, let us explain the fundamental behavior of the system.
First, the free-flow phase (see Fig. 4) can be observed for
every α and ζ . In this phase, large α directly leads to large
flux, corresponding to the linear relation between q and ρ. On
the other hand, when the conflict occurs at the exit, the rate
of outflow shrinks. If this outflow is smaller than inflow (for
large α and ζ ), the density of pedestrians increases, leading
to congestion [the congestion phase shown in Fig. 4 (right)].
In contrast, if the inflow is not sufficiently large, the conflict
disappears, recovering the free flow.

Here, if we take α as a controllable parameter for a given
ζ , how can we optimize the inflow parameter? The answer is
to keep the inflow lower than the critical rate, which prevents
the conflict at the exit from growing. We discuss this issue in
the following sections in detail.

FIG. 4. (Color online) Snapshots of the simulations. A green site
(at the top) and a red site (at the bottom) indicate the entrance and
exit sites, respectively. With the same inflow rate, one can observe
the free-flow phase (left) and congestion phase (right) of pedestrians
represented by blue circles.

B. Critical phenomenon related to α and ζ

In this subsection, we analyze the phase transition from
free flow to congestion in detail. Figure 5 shows the density
and flux in the steady state and the transient state. Here, the
transient state is defined as the state of the system with free-
flow initial conditions (the room with no pedestrian) at finite
time steps and introduced to include the probability of the
system having the phase transition. Even in the parameter
regime of the congestion, the system might keep the metastable
state for finite time steps. Hence the expected value of the flux
(density) in the transient state is larger (lower) than that in
the steady state. These kinds of quantities are also important
because the system does not always reach the stationary state
in actual evacuation of crowds.

Here, we summarize the simulation conditions in Table I.
In the simulations, each plot of the transition state (tr.) is
obtained by averaging the flux or density over tmax = 100 000
time steps and 100 samples [19]. On the other hand, plots for
the steady state (st.) are calculated by averaging over 1 000 000
time steps from t = 100 000 to tmax = 1 100 000. For the st.
plots, we adopted the initial condition that pedestrians occupy
all the available sites to ensure the occurrence of the congested
situation in the corresponding parameter regime.

In Fig. 5(b), the lines of the density jump at each critical
α, which correspond to the occurrence of the congestion.
Corresponding to the fact, the flux of pedestrians [Fig. 5(a)]
agrees with two types of lines: In the free-flow phase, the flux is
determined only by the inflow probability; on the other hand, in
the parameter regime of the congestion, the flux is determined
by the outflow. These two pedestrian fluxes are evaluated
theoretically in the next section. Moreover, the simulation
results of the steady states imply that the situation near the exit
can be assumed to be independent of the inflow probability
in the congested situation. On the other hand, one can see the

TABLE I. Simulation conditions.

st. tr.

Averaging time steps t = 100 000 − 1 100 000 t = 1 − 100 000
Number of samples 1 100
Initial condition ρ = 1 ρ = 0
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(a) (b)

FIG. 5. (Color online) Pedestrian flux and density in the steady state (st.) and transient state (tr.) vs α. Equations (5) and (12) derived in
Sec. IV are also shown as qf theo. and qc theo., respectively. The curves are added to improve visibility in (b).

peak of the flux in the transient state. Since the system does
not always cause congestion even in the congestion regime of
parameters (metastability), the expected flux is higher than the
congestion flux for α around the critical value. If the inflow
rate is large enough, the probability of the flux falling to
the congested situation increases, and thus, the average flux
decreases.

Figure 6 shows the phase diagram of the system. For
each ζ , the upper limit of the inflow rate to keep the free
flow is depicted with the line derived in Sec. IV C. From a
practical standpoint, it corresponds to the criteria for avoiding
the congested situation.

C. Merging

Buildings have branches of passages, and the merging of
the pedestrian flow is an important and complex problem
in architectural design. In this subsection, we present some
simulation results to show a paradoxical effect of local
improvement of the pedestrian flow. As more macroscopic
systems than those in previous subsections, we consider the
systems with three rooms and two types of connections:
the center (ce) connection [Fig. 7(a)] and the corner (co)

FIG. 6. (Color online) Phase diagram obtained by simulations
(st.). The red line indicates the theoretical critical condition (13).

connection [Fig. 7(b)]. Here, two rooms are connected to
a room with an exit site like an entrance hall, and we do
not provide pedestrians to each room after setting initial
conditions. In Ref. [7], it has been demonstrated that the
exits at the corner has larger capacity of outflow than ones
in the center because they have only two neighboring sites,
and conflicts are reduced. Therefore, at first sight, the corner
connection seems to be better in the sense of swift evacuation.
In fact, however, it is quite opposite, as shown in Fig. 8. The
simulations have been performed with an initial condition that
50 pedestrians are randomly distributed in each of two rooms
other than the entrance hall. As expected, the evacuation time
from each room to the entrance hall is improved by setting the
connection at the corner, namely, tco < tce; however, the total
evacuation time worsens as ζ increases. Accordingly, the rate
of the local evacuation time tco/tce decreases while that of the
total evacuation time Tco/Tce increases.

This phenomenon is explained as follows: The total evacu-
ation time is determined only by the outflow from the exit, and
the local pedestrian flow to the entrance hall does not influence
the total outflow directly. Furthermore, the large inflow to the
entrance hall will increase the density of pedestrians near the

FIG. 7. (Color online) Snapshots of the merging. (a) Center (ce)
connection, (b) corner (co) connection.
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(a) (b)

FIG. 8. (Color online) (a) Average evacuation time and (b) rates of evacuation time. T and t are the average total and local evacuation
time, and the subscripts “co” and “ce” stand for the conditions of the corner connection and the center connection, respectively. Each plot is
calculated by averaging 1000 samples.

exit, which leads to the decrease of the outflow. In other words,
if the local inflow is reduced by a strong bottleneck, the total
outflow is improved conversely.

Thus, we can conclude that pedestrian flow should be
dispersed not only spatially but also temporally, and that the
strong bottlenecks might be used for the total optimization.
Note that here we considered the situations in which the
effective inflow rate to the entrance hall is larger than the
exit capacity; namely, they are in the congestion phase as a
whole. If the exit has enough width, the local optimization
directly improves the total evacuation time.

IV. THEORETICAL ANALYSES

Let us analyze the pedestrian outflow in each phase and
its critical conditions focusing on a single bottleneck. In this
section, we consider the limit ks → ∞, where pedestrians
surely move to the most desirable site.

A. Free-flow phase

In the free-flow phase, the pedestrian flux is evaluated
by the inflow. First, we consider a balance equation at the
entrance site:

α(1 − ρen) = ρen. (4)

Here, ρen is the probability of finding a pedestrian at the
entrance site. Since we assume ks → ∞, a pedestrian at the en-
trance site surely leaves the site (with probability 1) in the next
time step. By solving the equation, we can evaluate the flux qf :

qf = α(1 − ρen) = α

1 + α
. (5)

This expression is shown in Fig. 5(a) and well agrees with the
simulation results.

B. Congestion phase

In the congested situation, the area near the exit is almost
fully occupied. This fact enables us to estimate the outflow
in the steady state. In the previous studies, the pedestrian
density at the neighboring sites of the exit is approximately
assumed to be 1 [6–8]. However, when the effect of the
conflict is strong, this assumption does not give a good

estimate. Especially in this paper, since the effect of the
conflict depends on the number of pedestrians involved, we
have to take the configurations of pedestrians at the exit into
consideration. Hence, we adopt a second-order approximation
here. In the approximation, we assume the probability of
finding a pedestrian at the site where the exit is accessible with
two jumps (the second neighboring site) to be 1 (see Fig. 9).
Then, the states of the neighboring sites are characterized by
four occupation numbers A,B,C, and E, which take 0 (empty)
or 1 (occupied). By considering transition probabilities among
these states, we can obtain the probability distribution P E

ABC

of finding each state in the steady state. Here, the superscript
corresponds to the occupation number of the exit, and the
subscripts indicate one of its neighboring sites as shown in
Fig. 9. To reduce the dimension of the transition matrix, we
use the following facts. First, we can easily find P 0

000 = 0 and
P 1

111 = 0. Since no configuration of pedestrians can result in
these states in the next time step, they are not realized in the
stationary state. Furthermore, by symmetry of the system, the
equations

P 0
100 = P 0

001, (6)

P 0
110 = P 0

011, (7)

P 1
100 = P 1

001, (8)

P 1
110 = P 1

011 (9)

FIG. 9. Cluster approximation. The probability of finding a
pedestrian on the second neighboring sites of the exit is assumed
to be 1.
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are satisfied. With the normalization condition, the transition matrix is summarized as follows:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P 0
100

P 0
010

P 0
110

P 0
101

P 0
111

P 1
000

P 1
100

P 1
010

P 1
110

P 1
101

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
4φ2

2
1
2φ2

2 0 0 0

0 0 0 0 0 1
4φ2

2 0 φ2
2 0 0

0 0 φ2
2 0 0 1

2φ2φ̃2
1
2φ2φ̃2 φ2φ̃2 φ2 0

0 0 0 φ2φ3 0 1
4φ3 + 1

2φ2φ̃2 φ3 + φ2φ̃2 0 0 φ3

0 0 2φ2φ̃2 φ2φ̃3 φ3
3
4 φ̃2

2 + 1
4 φ̃3 φ̃2

2 + φ̃3 φ̃2
2 2φ̃2 φ̃3

φ2
2 φ2

2 0 0 0 0 0 0 0 0
1
2φ3 + 1

2φ2φ̃2 φ2φ̃2
1
2φ2φ̃2

1
2 φ̃2φ3 0 0 0 0 0 0

φ2φ̃2 0 φ2φ̃2 0 0 0 0 0 0 0
1
2 φ̃2

2 + 1
2 φ̃3 0 1

2 φ̃2
2

1
2 φ̃2φ̃3

1
3 φ̃3 0 0 0 0 0

0 φ̃2
2 φ̃2

2 0 1
3 φ̃3 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P 0
100

P 0
010

P 0
110

P 0
101

P 0
111

P 1
000

P 1
100

P 1
010

P 1
110

P 1
101

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(10)

2P 0
100 + P 0

010 + 2P 0
110 + P 0

101 + P 0
111 + P 1

000 + 2P 1
100 + P 1

010 + 2P 1
110 + P 1

101 = 1. (11)

Note that abbreviated notations φ2 = φ(ζ,2), φ3 = φ(ζ,3), φ̃2 = 1 − φ2, and φ̃3 = 1 − φ3 are used. Then, the pedestrian flux is
given by

qc = P 1
000 + 2P 1

100 + P 1
010 + 2P 1

110 + P 1
101. (12)

This expression is illustrated with simulation results in Fig. 5(a). When the effect of the conflict is dominant, the error becomes
large. In this parameter region, pedestrians are not provided smoothly to the second neighboring sites due to the strong friction,
and thus, the assumption of the approximation is not satisfied. On the other hand, when the effect of the conflict is not strong, the
approximation gives good evaluation.

C. Critical conditions

In the previous subsections, we evaluated pedestrian flux in
the free-flow situation qf and congested situation qc. When
qc becomes smaller than qf , the system cannot maintain
the free-flow situation; therefore we can obtain the critical
condition regarding the inflow probability for a given ζ from
the condition qc = qf :

αcr = qc

1 − qc

. (13)

This critical condition is compared with simulation results in
Fig. 6, and well describes the phase transition.

Using this expression, we can control the inflow, preventing
the occurrence of the congestion. For example, by securing
additional routes and keeping the total inflow to one bottleneck
lower than the outflow in the congested situation, the clustering
at the exits can be avoided, which may shorten the total
evacuation time.

V. CONCLUSIONS

In this paper, we have taken a first step to treat the problems
of multiple bottlenecks in evacuation process. To consider
the problems, we focused on a part of the bottlenecks, using
a stochastic entrance. Through simulations, the metastable
state of pedestrian flow arising from the effect of pedestrian
conflicts is demonstrated. Supported by approximate analyses
we have derived the expressions for the pedestrian flux in

the free-flow phase and congestion phase, and a critical
condition of the inflow to prevent the congestion. Furthermore,
interesting phenomena related to the merging of pedestrian
flow have been reported. The local improvement of the
pedestrian flow sometimes causes more serious congestion.
We believe we could give some hints for designing evacuation
routes from a theoretical point of view. To validate these
characteristics, some experimental studies would also be
necessary.

In this paper, only simple situations have been focused
on to concentrate on the essence of the problem. However,
other factors such as the width of exits, multiple entrances
and/or exits, route choice of pedestrians, obstacles, etc., should
also be investigated in combination with our study in future
works.

APPENDIX: EXPLICIT EXPRESSION
OF qc FOR A SIMPLE CASE

Although we can obtain the explicit expression of qc by
solving Eqs. (10) and (11), the expression is very compli-
cated in general. If we use the friction parameter μ [5–7]
independent of the pedestrian number, namely, φ2 = φ3 = μ,
the expression will be relatively simple. Here we show the
result in the second-order approximation for this case q2(μ)
and compare it with the previous result derived by first-order
approximation [6]. From simultaneous Eqs. (10) and (11),
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we can derive

q2(μ) = 48 + 72μ − 132μ2 − 28μ3 + 140μ4 − 236μ5 + 131μ6 + 49μ7 − 91μ8 + 125μ9 − 126μ10 + 57μ11 − 9μ12

96 + 192μ − 144μ2 − 68μ3 + 240μ4 − 404μ5 + 78μ6 + 129μ7 − 166μ8 + 185μ9 − 117μ10 + 48μ11 − 9μ12
.

(14)

On the other hand, Ref. [6] presented the expression derived by the first-order approximation q1(μ) = 1−μ

2−μ
. The difference

between these equations yields

q2(μ) − q1(μ)

= μ5(32 + 16μ − 84μ2 + 64μ3 − 10μ4 − 75μ5 + 75μ6 − 18μ7)

(2 − μ)(96 + 192μ−144μ2 − 68μ3 + 240μ4 − 404μ5 + 78μ6 + 129μ7 − 166μ8 + 185μ9−117μ10 + 48μ11 − 9μ12)

= 1

6
μ5 − 1

6
μ6 + · · · (μ � 1). (15)

Hence q2(μ) = 1−μ

2−μ
+ 1

6μ5 + O(μ6) is asymptotic to q1(μ) in the μ → 0 limit, and we can conclude that the second-order
approximation presented in this paper improves the prediction, especially when the effect of the conflicts is strong.
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