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Improvement of pedestrian flow by slow rhythm
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We have developed a simple model for pedestrians by dividing walking velocity into two parts, which are step
size and pace of walking (number of steps per unit time). Theoretical analysis on pace indicates that rhythm that
is slower than normal-walking pace in a low-density regime increases flow if the flow-density diagram is convex
downward in a high-density regime. In order to verify this result, we have performed an experiment with real
pedestrians and observed the improvement of flow in a congested situation using slow rhythm.
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I. INTRODUCTION

Dynamics of pedestrians, as well as that of other self-driven
particles [1], has been vigorously studied by physicists over
recent decades since it is an interesting collective phenomenon
in nonequilibrium physics, and formation of jam is considered
to be a dynamical phase transition. Many pedestrian-dynamics
phenomena, such as arching and lane formation, are analyzed
by macroscopic and microscopic models [2]. Flow-density
diagrams (FDDs) and velocity-density diagrams, which are
often called fundamental diagrams (FDs), are also investigated
actively by both simulation [3] and experiment [4] to reveal
the basic characteristics of pedestrian dynamics. In addition to
the existence of free-flow and jam phases, the linear relation
between velocity and headway and the subsequent transition to
turbulent flow are observed in Refs. [5] and [6], respectively.
Influence of experimental and observational conditions on FDs
is also being investigated diligently. Reference [7] has clarified
how different measurement methods and configurations affect
FDs, and Ref. [8] has investigated an international difference
between FDs. Furthermore, a model that reproduces the FDs
in several geometries is being developed [9].

Elucidation of collective phenomena and the FD in pedes-
trian dynamics is an important mission for physicists engaged
in the research of self-driven particles. Besides, development
of solutions to ease congestion and contribution to safety [10]
are also expected, since many pedestrians suffer from conges-
tion in large cities and from difficulty in disaster evacuations
all over the world. However, the details of pedestrian FDs have
not been understood well enough to develop a general solution
to pedestrian congestion, so that few concrete methods have
been presented so far in spite of the many successful studies
of pedestrian dynamics. Therefore, in this paper we focus on
deriving a method to improve pedestrian flow in one of the
simplest situations rather than pursuing an accurate FD by
considering many factors.

In Ref. [11] the effect of music on an individual pedestrians
has been studied experimentally. Inspired by this research,
we analyze the effect of rhythm on crowded pedestrians
theoretically by our simple model and reveal that slow rhythm
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increases pedestrian flow in congested situations without any
danger. The result is also verified by our real experiments.

II. MODEL AND THEORETICAL ANALYSIS

A. Assumption of homogeneous distribution

We consider a one-dimensional periodic circuit whose
length is L. The width of the circuit is as wide as that of
one pedestrian, so that pedestrians walk in a line without
overtaking. Most FDs depict quasi-one-dimensional flow,
where overtaking is acceptable, and the variety of FDs partially
arises from overtaking. Thus, this condition contributes to
reduction of variety and focuses on a simple situation. A
similar pedestrian flow is studied in Refs. [5] and [12].
Moreover, we assume that N homogeneous pedestrians,
whose length is b, distribute homogeneously in the circuit
without considering complex microscopic interaction. Thus,
the pedestrians in our model have average properties of real
pedestrians, and the model does not reproduce important
phenomena such as the propagation of stop waves in the
congested situation; however, it still preserves the excluded
volume of pedestrians and enables us to obtain a method for
increasing flow.

Due to the homogeneous spatial distribution of pedestrians,
the density ρ and headway h are calculated as

ρ = N

L
,

(1)

h = L − bN

N
∈ [0,∞),

respectively. Thus, the relation between ρ and h is described
by

ρ = 1

b + h
,

(2)

h = 1 − bρ

ρ
.

From these equations, the range of ρ is (0,1/b].
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B. Step-size function

Since we have simplified the spatial distribution of pedes-
trians, we consider the velocity V of an individual in detail by
dividing it into two parts,

V (ρ) = S(ρ)P (ρ), (3)

where S (step-size function) and P (pace function) denote step
size and pace of walking (total number of right and left steps
per unit time), respectively. The figures in Ref. [11] indicate
that there is not a strong correlation between step size and pace
if pace is not extremely high, i.e., lower than about 120 BPM
(beats per minute), and the velocity linearly increases as pace
increases. Thus, this formulation is experimentally justified if
we consider pedestrians walking without haste.

The explicit formulation of the step-size function is intu-
itively determined as follows. It is plausible to assume that
there is maximum step size for pedestrians, which is given as
s, in the low-density regime. When the density becomes large,
pedestrians are no longer able to walk with their maximum
step size. Since we assume homogeneous spatial distribution,
the pedestrians can maximally proceed with headway h in one
step; however the effect of personal space, which is usually
larger than the size of the pedestrians in the direction of motion
b, prevents the pedestrians from contacting their predecessors.
This phenomenon is introduced by the parameter k ∈ (0,1],
and the step-size function is

S(ρ) =
{

s (0 � ρ � ρc),

kh(ρ) (ρc < ρ � ρj ),
(4)

where ρc = k/(kb + s) is calculated from the equation
kh(ρc) = s, and ρj = 1/b is the maximum density. Because of
the homogeneity of pedestrians and their spatial distribution,
the flow Q is computed by using the hydrodynamic equation
and individual velocity V as Q = ρV . The characteristics of
the step-size function coincide with the result in Ref. [5] that
the velocity linearly increases as the headway increases.

C. Pace function

Now let us start discussion of the pace function. If the
density is low and pedestrians do not interact with each other,
it is feasible to assume that pedestrians walk with constant
pace. However, contrary to the step-size function, it is difficult
to obtain the explicit formulation of the pace function in the
high-density regime with some intuitive assumptions. Thus,
we consider a simple linear function,

P (ρ) =
{

p (0 � ρ � ρc),

p − a[hc − h(ρ)] (ρc < ρ � ρj ),
(5)

where hc = h(ρc), and investigate how the change of pace
affects the flow. The parameter p represents pace in the
free-flow situation and a represents the influence of headway
and density on pace. If a > 0 (a < 0) the pace of pedestrians
decreases (increases) when the density increases, and if a = 0
pedestrians keep walking with constant pace p regardless of
the headway. Note that a � p/hc = kp/s since P (ρ) � 0. We
assume that pedestrians start to affect their followers when the
density becomes larger than ρc, so that the formulations of

both the step-size and pace functions are transformed there.
This unification of the critical point also contributes to the
simplicity of our model.

By considering Eqs. (4), (5), and the hydrodynamic equa-
tion, the explicit mathematical formulation of the flow Q is
obtained as

Q(ρ) =
{

spρ (0 � ρ � ρc),

k(1 − bρ)
[
p − a

( 1 − bρc

ρc
− 1 − bρ

ρ

)]
(ρc < ρ � ρj ).

(6)

The maximum of the flow is calculated as

Qmax =
{
spρc (a � ac),
kpj − 2kab(1 − √

1 − pj/(ab)) (a < ac),
(7)

which is achieved at

ρ =
{

ρc,

[b
√

1 − pj/(ab)]−1,
(8)

respectively. The parameters pj and ac are described as
follows:

pj = P (ρj ) = p − ahc,
(9)

ac = − bp

hc(b + hc)
.

As we can see from the expressions above, the density where
the maximum flow is attained is strongly influenced by the
parameter a.

The second derivative of the flow,

d2Q(ρ)

dρ2
= 1

ρ3

d2V (h)

dh2
=

{
0 (0 < ρ < ρc)

2ka/ρ3, (ρc < ρ < ρj ),
(10)

indicates that convexity of the flow Q in the high-density
regime is dominated by the parameter a. Therefore, the
parameter a, which controls the pace in the high-density
regime, plays important roles in our model. The plots of the
flow Q for three kinds of a are shown in Fig. 1. We see that
the FDD greatly varies according to the parameter a.

D. Improvement of flow by slow rhythm

Here we would like to propose a solution to improve flow in
the congested situation from our model, in which the velocity
of pedestrians is represented by the product of step size (4)
and pace (5).

If pedestrians walk with a constant rhythm, in other words if
we can control the walking pace by rhythm using a device such
as a metronome, the rhythm exactly corresponds to the pace,
i.e., the parameter p. Therefore, fast and slow rhythms increase
and decrease the flow, respectively, as we can verify from
Eq. (6). In this case, the parameter a = 0 because pedestrians
walk with constant pace pR irrespective of the density.

We denote the pace of walking without rhythm, i.e., normal
walking, in the free-flow situation as pN , and assume that
it decreases in the high-density regime, i.e., a = aN > 0,
which seems more realistic than a < 0. Then we surprisingly
observe the crossing between the two curves corresponding to
normal walking (p,a) = (1,0.5) and slow-rhythmic walking
(p,a) = (0.8,0) seen in Fig. 1. Due to the convexities of
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FIG. 1. (Color online) Theoretical FDDs for various (p,a) in the
case b = 1, s = 2, and k = 1. We observe the crossing between
the curves (1,0.5) and (0.8,0), which correspond to normal and
slow-rhythmic walking, respectively, at ρs = 5/13. Note that the
curves are not smooth at ρc = 1/3 due to the definition of our model
Eqs. (4)–(6).

the FDDs in the normal and rhythmic walking cases, i.e.,
convex downward and linear, a rhythm that is slower than the
normal-walking pace increases the flow in the high-density
regime. The crossing is achieved at

ρs = ρc

[
1 − pN − pR

a
ρc

]−1

, (11)

where ρc < ρs < ρj , if the condition

pN
j (=pN − aNhc) < pR < pN (12)

is satisfied.
This phenomenon may give a solution to ease congestion in

the real world. The significant advantage is that any excessive
haste is not necessary at all. The flow increases by just keeping
a slow walking pace. Thus, pedestrians do not consume extra
energy or conflict with others by moving aggressively in
pedestrian jams.

III. EXPERIMENT

A. Experimental setup

We have performed an experiment with real pedestrians
to verify the theoretical result obtained in Sec. II D. We
constructed a circuit whose inner and outer radii were ri =
1.8 m and ro = 2.3 m, respectively. The participants of
the experiment, who were male university students between
eighteen and thirty-nine years old, walked the circuit in the
counter-clockwise direction. In the beginning of each trial we
briefly instructed participants to distribute homogeneously in
the circuit without signs on the floor or measuring the distance
between each participant. A snapshot of the experiment is
shown in Fig. 2.

We executed eleven kinds of density conditions. The
number of the participants in the circuit in each condition was
N = {1, 3, 6, 9, . . . ,30}. The conditions N = 1 and N = 3
were tried three times with different participants, and the other

FIG. 2. (Color online) Snapshot of the experiment. Normal
walking, N = 15 (ρ = 1.16 persons/m).

conditions were tried once. Each trial was more than one
minute in the cases N � 3. The global density is calculated as

ρ = N

L
= N

π (ri + ro)
(13)

and was used to depict FDDs.
Two kinds of walking were performed in the experiment.

In the first case, we did not give any specific instructions to the
participants, so that they walked normally. In the latter case,
the participants were instructed to walk with the sound from
the electric metronome, whose rhythm is 70 BPM. Note that
we did not inform which foot to move first.

In the case N = 1, we measured the lap time for complete-
ing a circuit. In the case N � 3, we measured the time that
each participant passes the measuring point in the circuit and
depicted the cumulative plots, which show the evolution of the
total number of participants who passed the measuring point.
Then, linear regression analysis gives pedestrian flows as the
slope of the cumulative plots.

B. Experimental verification of the effect of rhythm

Figure 3 shows the FDDs obtained from our model and
experiment, which quantitatively correspond with each other
very well. From the figure, first we see that the flow is larger
in the normal case than the rhythmic case in the low-density
regime. Hence, the pace 70 BPM is much slower than the
normal-walking pace of the participants, and the flow becomes
smaller if the participants try to walk with the slow rhythm.
Second, linearity of the flows in the low-density regime verified
that participants walked with constant step size and pace.
Third, the flow decreases linearly in the rhythmic case as
expected from our analysis. This result is compatible with
the fact that step size changes as in Eq. (4). Furthermore, we
observe that the flow in the normal case is convex downward in
the high-density regime, as we have assumed in the theoretical
analysis. Thus, the walking pace decreases from the influence
of the predecessors. We consider that the clear convexity,
which was not seen in the previous experiment in Ref. [5], is
observed because we performed the experiment with a density
of more than 2.0 persons/m. Finally, since the theoretical
assumptions of the convexity are satisfied in the experimental
flows, we observe the crossing of the two plots. In other words,
the flow of the rhythmic case exceeds that of the normal case
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FIG. 3. (Color online) FDD of normal walking and rhythmic
walking (70 BPM). The curves and markers represent the theoretical
and experimental flows, respectively. The experimental values at ρ =
0.08 and 0.23 persons/m, i.e., N = 1 and 3, respectively, are averages
of the three trials. The parameters b = 0.35 m, s = 0.5 m, k = 0.78,
pN = 1.56 BPS (beats per second) = 94 BPM, and a = 2.2 BPS m
are obtained by the least-squares approach with the experimental data.
We clearly observe the crossing, and slow-rhythmic walking achieves
larger flow in the high-density regime.

in the high-density regime. Therefore, we have succeeded in
verifying that slow rhythm improves the pedestrian flow.

C. Analysis of errors

The standard error of each flow (slope) is shown in
Fig. 4. Their orders are 10−3 and are much smaller than
orders of the mean flows (10−1). Moreover, the determination
coefficients are larger than 0.99 in all the conditions. Thus,
the participants passed the measuring point rather constantly,
and the assumption of homogeneous spatial distribution is
not greatly harmed in our experiment. Due to the small
inertia of pedestrians, clear visibility, and small size of the
circuit, the participants did not form large clusters in the
congested situation, so that the flows calculated from our
model quantitatively agree well with the experimental flows in
spite of the very simple model.
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FIG. 4. (Color online) Standard errors of the experimental flows
by linear regression. The curves are added to improve visibility.

Although the errors are small, we observe that they change
according to the density. In the low-density regime, the errors
are large since the participants easily acquire headway that is
larger than the maximum step size s without homogeneous
spatial distribution. A procession, whose head is the slowest
participant, is formed, and some vacant space is observed after
the tail participant. In the middle-density regime, the errors
decrease since the participants’ effort to acquire headway
results in homogeneous spatial distribution. In the highdensity
regime, the errors become large again. This is because some
participants move promptly with small headway, about 30 cm,
while the others do not move and wait for enough headway
for one large step. Variety in the size of personal space
results in the larger errors in the high-density regime than
in the middle-density regime. Note that the heterogeneity of
the spatial distribution and the participants discussed in this
paragraph does not greatly harm our results, as we have seen
in the previous sections.

The errors are smaller in the rhythmic-walking case than
in the normal-walking case in the high-density regime. The
reversal of the flow, which is the main result in this paper,
comes from the retention of the walking pace using rhythm.
On the other hand this result implies that rhythm removes
the heterogeneity of pedestrians’ movement, synchronizes it,
and contributes to the homogeneous spatial distribution. This
synchronization effect by rhythm should be studied in detail
in the near future.

IV. CONCLUDING DISCUSSION

In this paper, we have obtained the FDD of pedestrians by
dividing the velocity term into the step-size and pace parts.
Analyzing the effect of pace, we have surprisingly discovered
that a rhythm that is slower than the normal-walking pace
in the free-flow situation increases the flow in the congested
situation. In spite of the assumption that both characteristics
and spatial distribution of pedestrians are homogeneous,
the result of our model agrees very well with that of the
experiment, and the improvement of flow is experimentally
verified. The analysis of errors indicates that rhythm also
contributes to synchronize movement of pedestrians.

We have succeeded in presenting a method to increase
flow in a simple situation, and more generalized research will
enhance its practical utility.

Our qualitative result, i.e., improvement of flow by slow
rhythm, mainly depends on the two characteristics of pedes-
trians. The first one is that pedestrians avoid conflict with
their predecessors by decreasing step size and pace in the
congested situation, and the other one is that they can walk
with the rhythm. Thus, we consider that same phenomenon will
be observed if most participants of the experiment share the
same characteristics above. However, the quantitative results,
such as the value of density where the crossing of the normal
and rhythmic flows is achieved, will be changed according to
participants of the experiment. Therefore, the dependence of
the parameters on the characteristics of pedestrians and the
geometry should be studied in detail. The step size s and the
pace p obtained in the normal-walking case in our experiment
are smaller than those in Ref. [11]. This may be attributed to
the difference of the body length of the participants and the
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configuration of the circuit. The change of pace against density
has not been researched so far, so more experimental data are
required to investigate how the parameter a varies with the
conditions. In the case where pedestrians move fast, such as
evacuation, the step-size function needs to be extended since
personal space, whose effect is represented by the constant
parameter k, varies with velocity [9].

These parameters are determined as the representative
values of the participants of our experiment by the least-
squares approach. If we obtain the individual parameters of
the participants, it is possible to analyze how they become the
parameters of a group. Then we can suggest the most effective
approach to smooth pedestrian flow in the congested situation
based on the information of individuals.

Since our model is simple, we are able to extend it
by introducing the delay of reaction and the probabilistic
factors from the previous sophisticated models for traffic and
pedestrian dynamics [1]. This extension will enable us to study
microscopic interaction between pedestrians and the deviation
of the flow (Fig. 4) in the rhythmic-walking case.

In our experiment, we have instructed the participants to
walk with the rhythm from the electronic metronome; however,
it is not certain whether pedestrians in the real world would
walk with the rhythm as in the experiment. Moreover, we
have observed that there were a few participants who did
not clearly walk with the rhythm, although the influence

from them is negligible. The same kind of examinees are
also reported in Ref. [11]. Therefore, it is significant to
study the relation between the improvement of flow and the
ratio of pedestrians walking with the rhythm. Investigation
of the way to synchronize pedestrians’ movement to the
rhythm without explicit instruction is another important future
work to apply the rhythmic-walking method to the real
world.

Researches on higher-dimensional cases are also necessary.
In the quasi-one-dimensional case, where the width of the
circuit is larger than one pedestrian, fast pedestrians are able
to pass slow ones. When we consider bidirectional flow and
two-dimensional cases, we need to consider conflicts between
pedestrians. Therefore, investigation of the effect of rhythm
may not be as simple as the one-dimensional case in this paper;
however, success of the study broadens the range of application
of the slow-rhythmic flow and contributes to achieving a
smooth-flow society.
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